A new impact actuator using linear momentum exchange of inertia mass.

نویسندگان

  • Hyun-Jin Min
  • Hyung-Jun Lim
  • Soo Hyun Kim
چکیده

For self-controlled endoscopes, many kinds of systems have been proposed. Among these, pneumatic actuators show significant potential. However, existing actuators, such as those used in endoscopes, have many weak points. In particular, free movement inside the human intestine is difficult because the diameter of the intestine varies dramatically along its length. We design and test a new method of locomotion of robotic endoscopes which allows safe manoeuverability in the human intestine. The actuating mechanism is composed of a solenoid at each end of the actuator and a single permanent magnet in the centre guide. If current is supplied to the two solenoids, attractive and repulsive forces occur between the permanent magnet and solenoid at each end. The permanent magnet moves by controlling the current supply period. When the current direction for operation is reversed, repulsive and attractive forces at each side are changed and the permanent magnet moves in the opposite direction. The collision at each period transfers momentum from the moving magnet to the actuator body. Furthermore, the moving speed of the actuator can be changed by the control of the impact force. Modelling and simulation are carried out to predict the performance of the actuator. The results of simulations are verified by comparison with experimental results. Finally, the momentum is measured by attaching an accelerometer to the solenoid head to define moving characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of momentum on stock returns in different market conditions

The purpose of this study is to compare the impacts of momentum on stock returns of companies listed in Tehran Stock Exchange in different market conditions. For this purpose, the sample size is 120 months from 2008 to 2017. The research hypotheses are estimated using multivariate linear regression using time series method. Based on the results of the hypotheses test, the momentum in each of th...

متن کامل

Mechanical System Modelling of Robot Dynamics Using a Mass/Pulley Model

The well-known electro-mechanical analogy that equates current, voltage, resistance, inductance and capacitance to force, velocity, damping, spring constant and mass has a shortcoming in that mass can only be used to simulate a capacitor which has one terminal connected to ground. A new model that was previously proposed by the authors that combines a mass with a pulley (MP) is shown to simulat...

متن کامل

Robust Landing Gear System Based on a Hybrid Momentum Exchange Impact Damper

When a spacecraft lands, a large shock load can lead to undesirable responses such as rebound and tripping. The authors previously discussed the problem of controlling these shock responses using momentum exchange impact dampers. An active/passive hybrid momentum exchange impact damper, which included an active actuator, was proposed. Themomentum exchange impact dampers’ performances are evalua...

متن کامل

Electronical and Mechanical System Modeling of Robot Dynamics Using a Mass/Pulley Model

The well-known electro-mechanical analogy that equates current, voltage, resistance, inductance and capacitance to force, velocity, damping, spring constant and mass has a shortcoming in that mass can only be used to simulate a capacitor which has one terminal connected to ground. A new model that was previously proposed by the authors that combines a mass with a pulley (MP) is shown to simulat...

متن کامل

Optimal Trajectory of Flexible Manipulator with Maximum Load Carrying Capacity

In this paper, a new formulation along with numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators is proposed. For rigid manipulators, the major limiting factor in determining the Dynamic Load Carrying Capacity (DLCC) is the joint actuator capacity. The flexibility exhibited by light weight robots or by robots o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical engineering & technology

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2002